陳正,就職于中國礦業(yè)大學(xué)材料與物理學(xué)院,1980年12月生,山東棗莊人,教授,博士生導師,院長(cháng)助理,新金屬結構材料及成形團隊負責人。
主要從事非平衡相變熱-動(dòng)力學(xué),高穩定新型納米結構材料形成與設計,非晶、高熵等亞穩新材料設計及功能性,特種鑄造工藝及模擬研究。主持國家自然基金面上項目、青年項目、江蘇省自然基金面上項目、中國博士后基金項目等項目10余項,參與國家重點(diǎn)研發(fā)、省重點(diǎn)研發(fā)、國家自然基金重大項目、面上項目多項;入選中國礦業(yè)大學(xué)第三批起航計劃、第九批青年骨干教師和青年學(xué)術(shù)帶頭人,獲得江蘇省“雙創(chuàng )計劃”人才項目支持。在A(yíng)cta Mater.、Scripta Mater.、J. All. Compd.、Mater. Sci. Eng. A.等金屬材料領(lǐng)域國際知名期刊發(fā)表SCI論文70余篇,出版英文專(zhuān)著(zhù)1部。獲得教育部自然科學(xué)一等獎、陜西省高??萍家坏泉?、江蘇省研究生教學(xué)成果二等獎等多項。中國材料研究學(xué)會(huì )凝固科學(xué)與技術(shù)分會(huì )理事、國家自然基金等項目涵評專(zhuān)家、Philosophical Magazine Letters等十余種國際期刊審稿專(zhuān)家。
主講材料工程基礎、現代凝固技術(shù)基礎、先進(jìn)材料成型技術(shù)及理論等本科及研究生課程,獲中國礦業(yè)大學(xué)教學(xué)成果一等獎1項,主編教材1部。指導本科生參加國家大學(xué)生創(chuàng )新計劃、材料設計大賽項目、江蘇省創(chuàng )新創(chuàng )業(yè)大賽并多次獲獎,所指導學(xué)生中80%獲得創(chuàng )新碩士獎學(xué)金。
求學(xué)與工作經(jīng)歷
2004年7月畢業(yè)于山東理工大學(xué),獲學(xué)士學(xué)位;
2009年10月畢業(yè)于西北工業(yè)大學(xué)凝固技術(shù)國家重點(diǎn)實(shí)驗室,獲工學(xué)博士學(xué)位,師從中科院周堯和院士;
2009年12月至今在中國礦業(yè)大學(xué)材料學(xué)院工作;
2016年3月-2017年3月于賓夕法尼亞州立大學(xué)訪(fǎng)問(wèn)研究。
代表性科研項目
1.陳正,基于高熵晶界修飾熱-動(dòng)力學(xué)的納米晶高溫穩定化研究, 國家自然科學(xué)基金面上項目(51771226),2018.1-2021.12.
2.陳正,高穩定Fe基納米晶的可控制備及其熱穩定機制研究,國家自然科學(xué)基金項目(51101169),2012.1-2014.12.
3.陳正,高性能納米結構材料一體化設計及溶質(zhì)共偏聚機理研究,江蘇省自然科學(xué)基金(BK20141126),2014.7-2017.6.
4.陳正,設計思維驅動(dòng)下的新工科人才培養模式匹配結構研究,江蘇教育科學(xué)“十三五”規劃重點(diǎn)課題(6V184039),2018.07-2020.7.
5.陳正,高壓多路閥設計制造關(guān)鍵共性技術(shù)研究,國家重點(diǎn)研發(fā)項目,2019.7-2022.6.
6.陳正,面向突變截面/復雜表面機械零件超音速?lài)娡縒C涂層增材制造關(guān)鍵技術(shù),江蘇省重點(diǎn)研發(fā)項目(BE2018061),2018.9-2021.8.
7.陳正,多元合金納米晶穩定化中晶界共偏析熱-動(dòng)力學(xué)研究,國家重點(diǎn)實(shí)驗室開(kāi)放課題(SKLSP201818),2018.6-2020.5.
8.陳正,高熵合金耦合強化作用控制及納米轉變機理研究,學(xué)科前沿方向研究專(zhuān)項(2015XKQY01),2015-2018
9.陳正,江蘇省博士后科學(xué)基金,1401052B,弱偏析納米合金的高溫穩定性設計及溶質(zhì)共偏聚機理研究,項目主持人,3萬(wàn)元,2014.7-2016.6
10. 陳正,高穩定塊體Fe基納米晶的可控制備及其熱穩定機制研究,中國博士后科學(xué)基金一等(2013M540475),2013.10-2015.10.
11.陳正,納米多元單相合金中溶質(zhì)共偏聚及與晶界交互機理研究2014QNA07,10萬(wàn), 2014-09-01-2017-9-01,中央高??蒲袠I(yè)務(wù)費
12.陳正,中國礦業(yè)大學(xué)青年科技基金(2010QNA06)“納米Fe基合金的極端非平衡凝固及熱穩定性研究”,2010.9~2013.9
13.陳正,高熵合金耦合強化作用控制及納米轉變機理研究, 中國礦業(yè)大學(xué)學(xué)科前沿專(zhuān)項基金,2015.9~2018.9, 項目主持人
14.陳正,西北工業(yè)大學(xué)開(kāi)放課題(SKLSP201119),納米Fe基合金的極端非平衡凝固及熱穩定性研究,2011.01-2013.12
15.陳正,金屬基碳化物材料的礦山機械耐磨損抗腐蝕零部件研究,中國礦業(yè)大學(xué)盱眙礦山裝備與材料研發(fā)中心創(chuàng )新基金,CXJJ201305
16.陳正,高性能鋼基金屬陶瓷螺桿制造技術(shù),江蘇省科技創(chuàng )新與成果轉化(重大科技支撐與自主創(chuàng )新)專(zhuān)項引導資金,BY2012083
代表性專(zhuān)利
1.陳正等,負載CoCr(Mn-Al)FeNi 高熵合金的納米顆粒催化劑及其制備方法和應用,國家發(fā)明專(zhuān)利,201910366879.4. (已授權)
2.陳正等,一種高熵晶界修飾的納米晶合金粉末及其制備方法,國家發(fā)明專(zhuān)利,201910349303.7. (已授權)
3.陳正等,一種鎳鉻-金剛石合金復合粉末及其制備方法和用途國家發(fā)明專(zhuān)利201910428501.2
4.陳正等,一種負載CoCrCuFeNi高熵合金的納米顆?;钚蕴考捌渲苽浞椒ê蛻?,國家發(fā)明專(zhuān)利,201910366647.9
5.陳正等,高鉻鑄鐵耐磨涂層的選擇性堆焊方法及裝置,國家發(fā)明專(zhuān)利,201910788474.X.
6.陳正等,一種鎳鉬鐵鉻-金剛石合金復合粉末及其制備方法和用途,國家發(fā)明專(zhuān)利,201910428525.8.
7.陳正等,一種鈮合金表面高溫耐磨涂層及其制備方法,國家發(fā)明專(zhuān)利,ZL201610905438.3.(已授權)
8.陳正等,一種塑料成型機機筒的制造方法,國家發(fā)明專(zhuān)利,ZL201710010579.3.(已授權)
9.陳正等,一種螺桿及其制備方法,國家發(fā)明專(zhuān)利,ZL201710010580.6.(已授權)
10.陳正等,一種耐磨損傳送輥制造方法,國家發(fā)明專(zhuān)利ZL201410634749.1(已授權)
獲獎情況
1. 陳正等,金屬材料非平衡相變的熱-動(dòng)力學(xué)協(xié)同效應與調控,教育部自然科學(xué)獎,2019,一等.
2. 陳正等,行業(yè)特色高校新興學(xué)科研究生“四體兩翼兩融合”培養模式探索與實(shí)踐,研究生教學(xué)成果獎,江蘇省教育廳,2019,二等.
3. 陳正等,非平衡金屬材料固態(tài)相變動(dòng)力學(xué)理論及應用研究,陜西高等學(xué)??茖W(xué)技術(shù)獎,2017,一等.
4. 陳正等,激光氮化與熔覆裝備及關(guān)鍵技術(shù),徐州市科技獎,2018,二等獎.
5. 陳正等,材料專(zhuān)業(yè)“雙創(chuàng )”實(shí)踐能力“學(xué)訓賽交融遞進(jìn)式”培養模式研究,中國礦業(yè)大學(xué)校教學(xué)成果獎,2017,一等。
6. 陳正等,材料專(zhuān)業(yè)“雙創(chuàng )”實(shí)踐能力“學(xué)訓賽”交融培養模式研究與實(shí)踐,全國煤炭行業(yè)教育教學(xué)成果獎獎,2017,三等.
7. 陳正(學(xué)生張躍、陳強等),中國大學(xué)生高分子材料設計大賽,優(yōu)秀指導教師, 2015,三等.
8. 陳正,材料學(xué)院講課比賽二等獎,2014.
9. 陳正(學(xué)生梁濤等),江蘇省大學(xué)生創(chuàng )新創(chuàng )業(yè)大賽優(yōu)秀論文獎,優(yōu)秀指導教師,2014.
10. 陳正,校優(yōu)秀班主任,2013.
11. 陳正,年度考核優(yōu)秀2013/2014/2018/2019.
12. 劉雨雨、梁濤、陳強、王尚等校創(chuàng )新碩士。
代表性論文、專(zhuān)著(zhù)
[1] Z. Chen, F. Liu, X.Q. Yang, C.J. Shen, A thermokinetic description of nanoscale grain growth: Analysis of the activation energy effect, Acta Materialia 60 (2012) 4833–4844.(金屬頂級期刊)
[2] Z. Chen, F. Liu, H. F. Wang, W. Yang, G. C. Yang, Y. H. Zhou, A thermokinetic description for grain growth in nanocrystalline materials. Acta Materialia, 2009, 57(5): 1466~1475.(金屬頂級期刊)
[3] Zheng Chen, Rapid solidification and related solid-state grain growth phenomena Lap LAMBERT Academic Publishing, 2015. 978-3-659-70614-1.(英文專(zhuān)著(zhù))
[4] J.Y. Zhang, F. Sun, Z. Chen, Y. Yang, B.L. Shen, J. Li, Strong and ductile beta Ti–18Zr–13Mo alloy with multimodal twinning, Materials Research Letters, 7(6) (2019) 251-257. (金屬頂級期刊)
[5] S. Wang, Z. Chen, P. Zhang, K. Zhang, C.L. Chen, B.L. Shen, Influence of Al content on high temperature oxidation behavior of AlxCoCrFeNiTi0.5 high entropy alloys, Vacuum 163 (2019) 263–268.
[6] L. C. Feng, Z. Chen, Y. Fan, J. Y. Zhang, B. L. Shen, Relation between undercooled solidification and solid-state grain growth accompanying dynamic segregation, Vacuum, 161 (2019) 71-80.
[7] Y. Y. Liu, Z. Chen, J. C. Shi, Z. Y. Wang, J. Y. Zhang, The effect of Al content on microstructures and comprehensive properties in AlxCoCrCuFeNi high entropy alloys, Vacuum 161 (2019) 143-149.
[8] S. Wang, Z. Chen, L.C. Feng, Y.Y. Liu, P. Zhang, Y.Z. He, Q.Q. Meng, J.Y. Zhang, Nano-phase formation accompanying phase separation in undercooled CoCrCuFeNi-3 at. % Sn high entropy alloy, Materials Characterization, 144 (2018) 516-521.
[9] Y. Zhang, Z. Chen, D.D. Cao, J.Y. Zhang, P. Zhang et al. Concurrence of spinodal decomposition and nano-phase precipitation in a multi-component AlCoCrCuFeNi high-entropy alloy. J Mater Res Technol. 2018. https://doi.org/10.1016/j.jmrt.2018.04.020.
[10] Z. Chen, Y. Zhang, S. Wang, J.Y. Zhang, P. Zhang, Microstructure and mechanical properties of undercooled Fe80C5Si10B5 eutectic alloy, Journal of Alloys and Compounds 747 (2018) 846-853.
[11] J.Y. Zhang, J.S. Li, Z. Chen, Q.K. Meng, F. Sun, B.L. Shen, Microstructural evolution of a ductile metastable b titanium alloy with combined TRIP/TWIP effects,Journal of Alloys and Compounds 699 (2017) 775-782.
[12] Z. Chen, T. Liang, Y. Zhang, L.C. Feng, X.Q. Yang, Y. Fan, TEM investigations of recrystallization in rapidly solidified Ni-Fe-Pb ternary alloy, Materials Characterization, 127 (2017) 73–76.
[13] Z. Chen, Y.Y. Tang, Q. Tao, Q. Chen, T. Liang, The mechanism of grain growth and thermal stability in Ni-1 at.% Pb alloy, Journal of Alloys and Compounds, 662 (2016) 628-633.
[14] Z. Chen, Q. Chen, C.J. Shen, F. Liu, Grain growth and thermal stability accompanying recrystallization in undercooled Ni-3at.%Sn alloy, Journal of Alloys and Compounds, 646 (2015) 983-989.
[15] R.X. Cui, Z. Chen, Y.Q. Wang, Y. Fan, F. Liu, C.H. Zhang, Analysis of activation energy evolution in thermo-kinetic process of nano-scale grain growth, Journal of Alloys and Compounds 646 (2015) 412-416.
[16] Q. Chen, Z. Chen, F. Liu, R.X. Cui, T. Liang, The investigation of recrystallization developed in the largely undercooled Ni–3 at.% Sn alloy, Journal of Alloys and Compounds, 638(25) (2015) 109–114.
[17] Z. Chen, X.Q. Yang, F. Liu, R.X. Cui, C.H. Zhang, Grain growth and thermal stability in nanocrystalline Fe-B alloys prepared by melt spinning, International Journal of Materials Research, 2015, 106 (5) 488-493.
[18] Z. Chen, Q. Chen, F. Liu, X.Q. Yang, Y. Fan, C.H. Zhang, A.M. Liu, The influence of solid-state grain growth mechanism on the microstructure evolution in undercooled Ni-10at.%Fe alloy, Journal of Alloys and Compounds, 622 (2015) 1086–1092.
[19] Z. Chen, Y.N. Yang, et al, Recalescence effect simulation and microstructure evolution of undercooled Fe82B17Si1 alloy, Acta Metallurgica Sinica, 50(7) (2014) 795-801.
[20] Z. Chen, Y.Y. Tang, Q. Chen, R.X. Cui, F. Liu, Z.H. Zhang, The interrelated effect of initial melt undercooling, solute trapping and solute drag on the grain growth mechanism of as-solidified Ni-B alloys, Journal of Alloys and Compounds, 610 (2014) 561-566
[21] Tao Liang, Zheng Chen, Xiaoqin Yang, Ning Liu, Yanan Yang, Chenlong Duan, Yuemin Zhao, Mechanism of grain refinement and coarsening in undercooled Ni–Fe alloy, International Journal of Materials Research, 105 (2014) E 854-860.
[22] Z. Chen, F. Liu, X.Q. Yang, C.J. Shen, Y.M. Zhao,A thermokinetic description of nano-scale grain growth under dynamic grain boundary segregation condition, Journal of Alloys and Compounds, 608 (2014) 338–342
[23] Z. Chen, F. Liu, X.Q. Yang, Y.Z. Chen, C.L. Yang, G.C. Yang, Y.H. Zhou, The interrelated effect of activation energy and grain boundary energy on grain growth in nanocrystalline materials, International Journal of Materials Research (2013) 104 (9); 1–6.
[24] Yang, Xiaoqin; Xu, Shaoping; Chen, Zheng; Liu, Jiongtian Improved nickel-olivine catalysts with high coking resistance and regeneration ability for the steam reforming of benzene REACTION KINETICS MECHANISMS AND CATALYSIS, 108(2), pp 459-472, 2013/4.
[25] Zheng Chen, Feng Liu, Xiaoqin Yang, Yu Fan, Chengjin Shen, Analysis of grain growth process in melt spun Fe–B alloys under the initial saturated grain boundary segregation condition, Journal of Alloys and Compounds (2012) 510; 46–53.
[26] Zheng Chen, Feng Liu, Xiaoqin Yang, Chengjin Shen, Yu Fan, Analysis of controlled-mechanism of grain growth in undercooled Fe-Cu alloy,Journal of Alloys and Compounds (2011) 509; 7109–7115.
[27] Zheng Chen, Feng Liu, Xiaoqin Yang, Ning Liu, Chengjin Shen, The effect of non-equilibrium δ/γ transition on the formation of metastable “dendrite core” in undercooled Fe–Cu alloy, Journal of Crystal Growth (2012) 354; 174–180.
[28] Z. Chen, F. Liu, K. Zhang, Y.Z. Ma, G.C. Yang, Y.H. Zhou, Description of grain growth in metastable materials prepared by non-equilibrium solidification. Journal of Crystal Growth, 2010, 313: 81~93.
[29] Zheng Chen, Feng Liu and Chengjin Shen, A physical explanation of plateau in velocity vs. undercooling curve using a undercooled dendrite growth model, Advanced Materials Research 189-193 (2011) 3815-3818
[30] Zheng Chen, Feng Liu, Chengjin Shen, Yu Fan, Comparison between kinetic and thermodynamic effects on grain growth in nano-scale materials, Advanced Materials Research 233-235 (2011) 2439-2442
[31] *Fan, Yu, Shipway, Philip, Tansley, Geoff, Chen, Zheng Study of effect on tensile stress test from distortion of fibre laser welded Ti6Al4V using FEA International Conference on Advanced Design and Manufacturing Engineering (ADME 2011), 2011/9/16-2011/9/18, pp 1889-1894, Guangzhou, PEOPLES R CHINA, 2011.
[32] Z. Chen, F. Liu, K. Zhang, Y.Z. Ma, G.C. Yang, Y.H. Zhou, Description of grain growth in metastable materials prepared by non-equilibrium solidification. Journal of Crystal Growth, 2010, 313: 81~93. (SCI: 2010695LV EI: 11664044) IF:1.534
[33] Z. Chen, H.F. Wang, F. Liu, W. Yang, Effect of nonlinear liquidus and solidus on the dendrite growth in bulk undercooled melts. Transactions of Nonferrous Metals Society of China, 2010, 20, 490~494.
[34] X.Q. Yang, Z. Chen, W. Yang, Analysis of thermal stability after occurrence of absolute solute trapping in undercooled Co-Cu alloy, International Journal of Materials Research (2013) 104; 783–788. (SCI,EI)
[35] K. Zhang, Z. Chen, F. Liu, C.L. Yang, Thermodynamic state and kinetic process, analysis of grain boundary excess in nano-scale grain growth. J. Alloys and Compounds, 2010, 501: L4~L7. IF:2.135, SCI, EI.
[36] N. Liu, F. Liu, W. Yang, Z. Chen, G.C. Yang, Movement of minor phase in undercooled immiscible Fe–Co–Cu alloys, Journal of Alloys and Compounds 551 (2013) 323–326, SCI, EI.
[37] N. Liu, F. Liu, Z. Chen, W. Yang,G.C. Liquid-phase Separation in Rapid Solidification of Undercooled Fe-Co-Cu Melts, J. Mater. Sci. Technol. 2012, 28(7), 622-625. SCI, EI.
[38] Z. Chen, F. Liu, H. F. Wang, W. Yang, G. C. Yang, Y. H. Zhou, A thermokinetic description for grain growth in nanocrystalline materials. Acta Materialia, 2009, 57(5): 1466~1475. IF:3.729
[39] Z. Chen, F. Liu, W. Yang, H. F. Wang, G. C. Yang, Y. H. Zhou, Influence of grain boundary energy on the grain size evolution in nanocrystalline materials. Journal of Alloys and Compounds, 2009, 475: 893~897. IF:2.135
[40] Z. Chen, F. Liu, H. F. Wang, W. Yang, G. C. Yang, Y. H. Zhou, Formation of single-phase supersaturated solid solution upon solidification of highly undercooled Fe-Cu immiscible system. Journal of Crystal Growth, 2008, 310: 5385~5391. IF:1.534
[41] Z. Chen, F. Liu, H. F. Wang, G. C. Yang, Y. H. Zhou, The effect of kinetics on the stability under non-equilibrium condition. Materials Science and Engineering A, 2006, 433: 182~189. IF:1.9
[42] Z. Chen, F. Liu, G. C. Yang, Y. H. Zhou, Influence of grain boundary energy on the grain size evolution in nanocrystalline materials. Journal of Physics: Conference Series, 2009, 152: 012086.
[43] F. Liu, Z. Chen, H.F. Wang, C.L. Yang, W. Yang, G.C. Yang, Thermodynamics of nano-scale grain growth. Materials Science and Engineering A, 2007, 457: 13~17.
[44] H.F. Wang, F. Liu, Z. Chen, G.C. Yang, Y.H. Zhou, Analysis of non-equilibrium dendrite growth in bulk undercooled alloy melt, model and application, Acta Materialia, 2007, 55: 497~506.
[45] H.F. Wang, F. Liu, Z. Chen, W. Yang, G.C. Yang, Y.H. Zhou, Effect of non-linear liquidus and solidus inundercooled dendrite growth: A comparative study in Ni0.7at.%B and Ni1at.%Zr system. Scripta Materialia 2007, 57: 413C41.
[46] H. F. Wang, F. Liu, Z. Chen, W. Yang, Solute trapping model based on solute drag treatment, Trans. Nonferrous Met. Soc. China 20 (2010) 877~881, SCI, EI.
[47] F. Liu, H.F. Wang, Z. Chen, W. Yang, G.C. Yang, Determination of activation energy for crystallization in amorphous alloys. Materials Letters, 2006, 60: 3916~3921.
[48] 王海豐, 劉峰,陳正, 楊根倉, 周堯和, 非平衡凝固條件下耦合弛豫效應的M-S理論, 中國科學(xué)E, 37. 5: 674~685.
[49] H.F. Wang, F. Liu, Z. Chen, Dendrite growth model incorporating non-linear liquidus and solidus in bulk undercooled melts, Journal of Central South University of Technology, 2007, 14: 94~100.
[50] H.F. Wang, F. Liu, W. Yang, Z. Chen, G.C. Yang, Y.H. Zhou, Solute trapping model incorporating diffusive interface. Acta Materialia, 2008, 56(4):746~753.
[51] H.F. Wang, F. Liu, W. Yang, Z. Chen, G.C. Yang, Y.H. Zhou, An extended morphological stability model incorporating non-linear liquidus and solidus. Acta Materialia, 2008, 56(11): 2592~2601.
[52] F. Liu, G.C. Yang, H.F. Wang, Z. Chen, Y.H. Zhou. Nano-scale grain growth kinetics, Thermochimica Acta, 2006, 443: 212~216.
代表性教學(xué)成果
承擔教學(xué)項目
[1] 陳正,《材料工程基礎》課程教學(xué)與實(shí)踐教學(xué)的整合與優(yōu)化,校教學(xué)改革青年項目,2012-2015。
[2] 陳正,2017YB38,專(zhuān)業(yè)認證導向的材料連接成型課組的構建與實(shí)踐,校教學(xué)改革一般項目2017-2020。
[3] 陳正,2017YB38,基于ESI指標體系的研究生創(chuàng )新能力提升新模式的研究與實(shí)踐,研究生教改項目,2015.5-2017.5.
[4] 陳正, “強本拓新”背景下研究生拓新交叉能力提升新模式的研究與實(shí)踐,校研究生教改項目2019-2021
[5] 陳正,以能力培養為導向,工程實(shí)例為載體的《現代凝固技術(shù)》課程教學(xué)模式設計,校教學(xué)改革青年項目,2018-2020
[6] 陳正,“雙一流”背景下非一流學(xué)科的青年教師與研究生協(xié)同發(fā)展模式探討校教學(xué)改革一般項目2017-2018
[7] 陳正,《現代焊接設備及其自動(dòng)化》“課程思政”示范項目2019-2021
主編教材
[1] 陳正、樊宇、王延慶,材料成型專(zhuān)業(yè)實(shí)踐認識,2016,中國礦業(yè)大學(xué)出版社.
教學(xué)論文
[1] 論高等工程教育中人文素養的培育,教育教學(xué)研究/2018.3
[2] 研究生拓新交叉能力提升模式的研究與實(shí)踐,教育教學(xué)研究/2019.10
[3] 專(zhuān)業(yè)認證導向的材料連接成型課組的構建與實(shí)踐,教育教學(xué)研究/2019.2
[4] ESI指標體系下研究生創(chuàng )新能力提升模式的研究與實(shí)踐,教育教學(xué)研究/2016.1
[5] 課堂教學(xué)與實(shí)踐教學(xué)的優(yōu)化整合在材料工程基礎課程中的應用,高等教育研究/2013.1
[6] 現代凝固技術(shù)課程中模塊化教學(xué)的改革與應用,教育教學(xué)研究/2014.6
[7] “材料工程基礎”課堂教學(xué)與實(shí)踐教學(xué)的優(yōu)化整合,教育教學(xué)研究/2014.5
[8]以創(chuàng )新性案例教學(xué)推動(dòng)大學(xué)課堂教學(xué)模式革新,教育教學(xué)研究/2019.1
[9]工程教育專(zhuān)業(yè)認證背景下創(chuàng )新性案例教學(xué)的實(shí)踐路徑探析,教育教學(xué)論壇雜志社/2019接收
[10] 理工科專(zhuān)業(yè)基礎課程中的思政教育探索與實(shí)踐,西安航空學(xué)院學(xué)報/2018.6
[11] 陳正、沈承金、歐雪梅等,課堂教學(xué)與實(shí)踐教學(xué)的優(yōu)化整合在材料工程基礎課程中的應用,高等教育研究,1期(2013)36.